Alpha-Al₂O₃ Nanotemplate as a Novel Method of Improving the Oxidation Life of Thermal Barrier Coatings

Y.-F. Su, L. M. He, J. D. Meyer, and W. Y. Lee

Department of Chemical, Biochemical, and Materials Engineering

Collaborators

R. Darolia, GE Aircraft Engines M. J. Lance and C. J. Rawn, ORNL S. Ruppi, SECO Tools, Sweden A. Quintero, Central University of Venezuela

Sponsors

ONR Grant N00014-99-1-0281

Robert C. Stanley Fellowship

Abstract

We are exploring a novel concept that will improve the oxidation life of thermal barrier coatings (TBCs) while reducing the non-load-bearing weight of TBC-coated turbine components. TBCs are currently used, in conjunction with air cooling, to prolong the life of metallic "hot-section" Ni-based superalloy components used in aircraft engines and power generation turbines with an annual market size of ~\$1.5 billion. The life of state-of-the-art TBCs is largely dictated by: (1) the ability of a metallic bond coating to form an adherent scale, or commonly referred to as thermally grown oxide (TGO), at the metal-ceramic interface and (2) the rate at which the TGO grows upon high-temperature oxidation. Metallic bond coatings, despite their critical importance to current TBC design, contribute significant "dead weight" to thin-walled turbine components, and exhibit serious chemical and mechanical instabilities at the substrate/bond coating/TGO interfaces during long-term exposures.

We have discovered a novel procedure for preparing a ~100 nm thick nanotemplate of fully crystalline \mathbf{a} -Al₂O₃ directly on the surface of a single crystal Ni-based superalloy by chemical vapor deposition. The \mathbf{a} -Al₂O₃ nanotemplate reduces the rate of TGO growth by a factor of three through the elimination of transient oxidation and the formation of less grain boundaries within the columnar TGO structure upon oxidation at 1150°C for 50 hours. Our results demonstrate that the \mathbf{a} -Al₂O₃ nanotemplate proactively guides the alloy surface to form a TGO that is more tenacious and slower growing than what is attainable with state-of-the-art bond coatings, and consequently offers the realistic chance of eliminating the need for a thick, non-load-bearing metallic coating in future TBC design.

How to Engineer TGO beyond Traditional Metallurgical Methods?

Nanotemplate Approach Offers Slower TGO Growth and Bond Coat Elimination

Industry CVD Process Was Initially Examined for **a**-Al₂O₃ Nanotemplate Synthesis

SECO Tools

- $AlCl_3/H_2/CO_2$
- 1020°C for 3 h

Halvarsson & Vuorinen, 1995

Substrates Effects on As-Deposited CVD-Al₂O₃ Morphology

Laboratory CVD Reactor Used at Stevens to Optimize CVD **a**-Al₂O₃

CO₂ + H₂ Pretreatment for Short-Time Selective Oxidation

Surface Morphology after 1 min CO₂+H₂ & 10 min CVD-Al₂O₃ on René N5

Continuous and Homogeneous **a**-Al₂O₃ Layer (~50 to 150 nm)

a-Al₂O₃ Detected Along With Polycrystalline **g** Ni₃Al

Our Speculation on Effects of CO₂+H₂ Pretreatment

Effects of Nanotemplate on TGO Morphology & Growth

without nanotemplate

with nanotemplate

After Isothermal Oxidation at 1150°C for 50 h

Effectiveness of Nanotemplate in Comparison to Advanced Alloys and Bond Coatings

Nanotemplate/TGO Was Highly Stressed before and after Oxidation

Intensity

Frequency (cm⁻¹)

Conclusions

- Synthesis of an entirely **a**-Al₂O₃ nanotemplate layer directly on René N5 appears to be possible.
- The TGO on René N5 grows about three times slower with a 100 nm nanotemplate during isothermal oxidation at 1150°C for 50 hours.
 - Predominately inward TGO growth
 - No transient oxidation (TBD)
 - Less number of grain boundaries (TBD)
- The TGO is highly stressed to about -4 GPa after the oxidation exposure indicating that the quality of the TGO is excellent.