Hf Doping of an Aluminide Bond Coat for Single Crystal Jet Engine Turbine Blades

J. D. Meyer, L.M. He, G. Y. Kim, and W. Y. Lee

Sponsors NSF-GOALI DMR9801042 DOE/ORNL-ATS **Robert C. Stanley Fellowship** AGTSR Internship

Collaborators

Ram Darolia, GE Aircraft Engines Allen Haynes, ORNL

Department of Chemical, Biochemical, and Materials Engineering

Summary of Efforts

Thermal barrier coatings (TBCs) are currently used, in conjunction with air cooling, to prolong the life of metallic "hot-section" Ni-based superalloy components used in aircraft engines and power generation turbines with an annual market size of ~\$1.5 billion. The advent of next-generation TBCs requires superior oxidation characteristics over those of current metallic bond coatings. One potent way of improving oxidation resistance is to dope Ni-based alloys with a small amount of a reactive element such as Y, Hf, or Zr. We have performed Hf doping experiments while the surface of a single crystal Ni alloy was being aluminized to form an aluminide (β-NiAl) coating matrix by chemical vapor deposition for improved oxidation resistance of the NiAl coating.

A continuous doping procedure, in which $HfCl_4$ and ACl_3 were simultaneously introduced with H_2 , required a high HfCl₄/AlCl₃ ratio (>~0.6) to cause the precipitation of Hf-rich particles (~0.1 μm) at grain boundaries of the coating layer with the overall Hf concentration of ∼0.05 to 0.25 wt%. Below this ratio, Hf did not incorporate as a dopant from the gas phase as the coating matrix appeared to be "saturated" with other refractory elements partitioned from the alloy substrate. We have also studied a sequential doping procedure that consists of pretreating the alloy surface with $HfCl_4$ and H_2 followed by aluminizing. The Ni alloy surface reacted significantly with $HfCl₄$ and $H₂$, even for a short exposure of 30 seconds, to form an Hf-rich layer containing Hf_8Ni_{21} , Hf_3Ni_7 , and $HfNi_3$ precipitates. This Hf-rich layer apparently worked as a diffusion barrier to mitigate the columnar growth of β-NiAl grains. Our results suggest that the most promising avenue for controlling Hf concentration and distribution is to periodically nucleate very small Hf particles in the coating matrix via time-resolved switching between $AICl_3$ and $HfCl_4$ precursors.

Superior Adhesion Needed for Next Generation TBCs

10 µm EBPVD-YSZ Coating Alumina Scale Failure Location Aluminide Bond Coating (BC) Courtesy of GEAE Hf: (~0.1 to 3 wt%???) Problems observed in industry

- **Lack of process reproducibility**
- **Inconsistent composition/performance relationships**

Single crystal Ni super alloy with TBC

"Model" TGO Behavior

• **Beneficial effects of Hf**

- **TGO growth kinetics**
- **Columnar TGO**
- **Immobilized sulfur impurity**
- **Creep resistance of b-NiAl**
- **Optimum performance** $-$ ~0.2 wt% Hf
- **Hf solubility in cast b-NiAl** – **Not precisely measured** – **Estimated ~0.1 wt% by Pint**

CVD Reactor Designed for Short-time Experiments

Baseline Aluminizing Behavior on René N5 (without Hf Doping)

Kim et al., Metall. Trans. A. (in press)

First Approach: Sequential Doping Procedure

Hf-rich Precipitates Act as Ni Outward Diffusion Barrier and Retard b-NiAl Formation

20 min aluminizing

0.5 min Hf predeposition

2 mm b

Hf 2mm 2 mm

10 min Hf predeposition

Hf ppts

Significant Hf Incorporation by Sequential Doping

10 min Hf predeposition

Second Approach: Continuous Doping Procedure

Very Low Hf Conc. Even at High HfCl⁴ Conc.

 -0.01 wt% Hf (from René N5) ~ 0.1 wt% Hf ~ 0.1 wt% Hf

due to precipitates

Kim et al., Metall. Trans. A. (submitted)

Hf Conc. And Dist. Measured by GDMS & EMPA

He et al., Metall. Trans. A. (in progress)

Hf and Ta Concentration Profiles at Low HfCl⁴

Observations During Process Development

• **Sequential Doping**

- **Significant Hf incorporation through Hf-rich precipitates**
- **Hf-rich Precipitates worked as diffusion barriers and altered coating microstructure**

• **Continuous Doping**

- **Retained columnar microstructure**
- **Hf incorporation during continuous doping appeared to limited by its solubility in b-NiAl**
- **High HfCl⁴ /AlCl³ ratio were needed**

• **Future Work**

- **"Floating behavior" of g**CNi₃Al layer at the coating surface and its effects on **aluminizing kinetics and Hf incorporation behavior**
- **Preparation of Hf-doped coating specimens for performance evaluation ~0.01 to 3 wt% Hf**

How to Synthesize Coatings with 0.01 to 3 wt% Hf?

