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Summary of Efforts

Thermal barrier coatings (TBCs) are currently used, in conjunction with air cooling, to prolong the life 
of metallic "hot-section" Ni-based superalloy components used in aircraft engines and power 
generation turbines with an annual market size of ~$1.5 billion. The advent of next-generation TBCs
requires superior oxidation characteristics over those of current metallic bond coatings.  One potent 
way of improving oxidation resistance is to dope Ni-based alloys with a small amount of a reactive 
element such as Y, Hf, or Zr.  We have performed Hf doping experiments while the surface of a single 
crystal Ni alloy was being aluminized to form an aluminide (β-NiAl) coating matrix by chemical vapor 
deposition for improved oxidation resistance of the NiAl coating.  

A continuous doping procedure, in which HfCl4 and AlCl3 were simultaneously introduced with H2, 
required a high HfCl4/AlCl3 ratio (>∼0.6) to cause the precipitation of Hf-rich particles (∼0.1 µm) at 
grain boundaries of the coating layer with the overall Hf concentration of ∼0.05 to 0.25 wt%.  Below 
this ratio, Hf did not incorporate as a dopant from the gas phase as the coating matrix appeared to be 
“saturated” with other refractory elements partitioned from the alloy substrate.  We have also studied a 
sequential doping procedure that consists of pretreating the alloy surface with HfCl4 and H2 followed 
by aluminizing.  The Ni alloy surface reacted significantly with HfCl4 and H2, even for a short 
exposure of 30 seconds, to form an Hf-rich layer containing Hf8Ni21, Hf3Ni7, and HfNi3 precipitates.   
This Hf-rich layer apparently worked as a diffusion barrier to mitigate the columnar growth of β-NiAl
grains.  Our results suggest that the most promising avenue for controlling Hf concentration and 
distribution is to periodically nucleate very small Hf particles in the coating matrix via time-resolved 
switching between AlCl3 and HfCl4 precursors.



Superior Adhesion Needed for Next Generation TBCs

Single crystal Ni super alloy with TBC
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Problems observed in industry
• Lack of process reproducibility
• Inconsistent composition/performance relationships



“Model” TGO Behavior
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• Cast stoichiometric β-NiAl
– Pint et al., 1998

• Beneficial effects of Hf 
– TGO growth kinetics
– Columnar TGO 
– Immobilized sulfur impurity
– Creep resistance of β-NiAl

• Optimum performance
– ~0.2 wt% Hf

• Hf solubility in cast β-NiAl
– Not precisely measured
– Estimated ~0.1 wt% by Pint



CVD Reactor Designed for Short-time Experiments

Constructed by G.Y. Kim
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Baseline Aluminizing Behavior on René N5 
(without Hf Doping)

Kim et al., Metall. Trans. A. (in press)
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First Approach: Sequential Doping Procedure
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Hf-rich Precipitates Act as Ni Outward Diffusion 
Barrier and Retard β-NiAl Formation
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Significant Hf Incorporation by Sequential Doping 
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Second Approach: Continuous Doping Procedure
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Very Low Hf Conc. Even at High HfCl4 Conc.
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Hf Conc. And Dist. Measured by GDMS & EMPA
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Hf and Ta Concentration Profiles at Low HfCl4
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Observations During Process Development

• Sequential Doping
– Significant Hf incorporation through Hf-rich precipitates
– Hf-rich Precipitates worked as diffusion barriers and altered coating  

microstructure

• Continuous Doping
– Retained columnar microstructure
– Hf incorporation during continuous doping appeared to limited by its

solubility in β-NiAl
– High HfCl4/AlCl3 ratio were needed

• Future Work
– “Floating behavior” of γ′-Ni3Al layer at the coating surface and its effects on 

aluminizing kinetics and Hf incorporation behavior
– Preparation of Hf-doped coating specimens for performance evaluation 

~0.01 to 3 wt% Hf



How to Synthesize Coatings with 0.01 to 3 wt% Hf?
HfCl4 Pulsing < 0.5 min 
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