Hf Doping of an Aluminide Bond Coat for Single Crystal Jet Engine Turbine Blades

J. D. Meyer, L.M. He, G. Y. Kim, and W. Y. Lee

<u>Sponsors</u> NSF-GOALI DMR9801042 DOE/ORNL-ATS **Robert C. Stanley Fellowship** AGTSR Internship <u>Collaborators</u> Ram Darolia, GE Aircraft Engines Allen Haynes, ORNL

Department of Chemical, Biochemical, and Materials Engineering

Summary of Efforts

Thermal barrier coatings (TBCs) are currently used, in conjunction with air cooling, to prolong the life of metallic "hot-section" Ni-based superalloy components used in aircraft engines and power generation turbines with an annual market size of ~\$1.5 billion. The advent of next-generation TBCs requires superior oxidation characteristics over those of current metallic bond coatings. One potent way of improving oxidation resistance is to dope Ni-based alloys with a small amount of a reactive element such as Y, Hf, or Zr. We have performed Hf doping experiments while the surface of a single crystal Ni alloy was being aluminized to form an aluminide (β -NiAl) coating matrix by chemical vapor deposition for improved oxidation resistance of the NiAl coating.

A continuous doping procedure, in which $HfCl_4$ and $AlCl_3$ were simultaneously introduced with H_2 , required a high $HfCl_4/AlCl_3$ ratio (>~0.6) to cause the precipitation of Hf-rich particles (~0.1 µm) at grain boundaries of the coating layer with the overall Hf concentration of ~0.05 to 0.25 wt%. Below this ratio, Hf did not incorporate as a dopant from the gas phase as the coating matrix appeared to be "saturated" with other refractory elements partitioned from the alloy substrate. We have also studied a sequential doping procedure that consists of pretreating the alloy surface with HfCl₄ and H₂ followed by aluminizing. The Ni alloy surface reacted significantly with HfCl₄ and H₂, even for a short exposure of 30 seconds, to form an Hf-rich layer containing Hf₈Ni₂₁, Hf₃Ni₇, and HfNi₃ precipitates. This Hf-rich layer apparently worked as a diffusion barrier to mitigate the columnar growth of β -NiAl grains. Our results suggest that the most promising avenue for controlling Hf concentration and distribution is to periodically nucleate very small Hf particles in the coating matrix via time-resolved switching between AlCl₃ and HfCl₄ precursors.

Superior Adhesion Needed for Next Generation TBCs

Problems observed in industry

- Lack of process reproducibility
- **Inconsistent composition/performance relationships**

Single crystal Ni super alloy with TBC

"Model" TGO Behavior

• Cast stoichiometric **b**-NiAl – Pint et al., 1998

Beneficial effects of Hf

- TGO growth kinetics
- Columnar TGO
- Immobilized sulfur impurity
- Creep resistance of **b**-NiAl
- Optimum performance – ~0.2 wt% Hf
- Hf solubility in cast b-NiAl

 Not precisely measured
 Estimated ~0.1 wt% by Pint

CVD Reactor Designed for Short-time Experiments

Baseline Aluminizing Behavior on René N5 (without Hf Doping)

Kim et al., Metall. Trans. A. (in press)

First Approach: Sequential Doping Procedure

<u>Hf-rich Precipitates Act as Ni Outward Diffusion</u> <u>Barrier and Retard **b**-NiAl Formation</u>

20 min aluminizing

b

g¢

Coating

0.5 min Hf predeposition

b 2 mm

b+Hf ppts

g-Hf ppts

10 min Hf predeposition

Hf ppts

ge-Hf ppts

Significant Hf Incorporation by Sequential Doping

10 min Hf predeposition

Second Approach: Continuous Doping Procedure

Very Low Hf Conc. Even at High HfCl₄ Conc.

~0.01 wt% Hf (from René N5)

~0.1 wt% Hf due to precipitates

Kim et al., Metall. Trans. A. (submitted)

Hf Conc. And Dist. Measured by GDMS & EMPA

He et al., Metall. Trans. A. (in progress)

Hf and Ta Concentration Profiles at Low HfCl₄

Observations During Process Development

• Sequential Doping

- Significant Hf incorporation through Hf-rich precipitates
- Hf-rich Precipitates worked as diffusion barriers and altered coating microstructure

• Continuous Doping

- Retained columnar microstructure
- Hf incorporation during continuous doping appeared to limited by its solubility in **b**-NiAl
- High HfCl₄/AlCl₃ ratio were needed

• Future Work

- "Floating behavior" of geNi₃Al layer at the coating surface and its effects on aluminizing kinetics and Hf incorporation behavior
- Preparation of Hf-doped coating specimens for performance evaluation ~0.01 to 3 wt% Hf

How to Synthesize Coatings with 0.01 to 3 wt% Hf?

