Materials and Processing Issues Associated With Seal Coating Development

J. D. Meyer and W. Y. Lee Department of Chemical, Biochemical, and Materials Engineering Stevens Institute of Technology

23rd Annual Cocoa Beach Conference & Exposition Cocoa Beach, FL January 25, 1999

Acknowledgments

- Current research sponsored by Brad Beardsley at *Caterpillar, Inc.*
- The results from the chloride-based Al₂O₃ coating work were obtained by W.Y. Lee at Oak Ridge National Laboratory under the sponsorship of Ray Johnson, *Heavy Vehicle Propulsion System Materials Program*, DOE Office of Transportation Technologies.

Rationale for Seal Coating

- Thermal Barrier Coatings (TBCs) are being considered to improve diesel engine efficiency
 - CeO₂-stabilized ZrO₂ (CSZ) prepared by air plasma spray (APS) provides thermal insulation of diesel components
 - APS-CSZ is made porous for strain tolerance and enhanced thermal insulation
- Unexpectedly, testing at Caterpillar revealed a decrease in engine efficiency when components were coated with a TBC
 - One possible reason may be the porosity of the TBC, which is suspected to "entrain" fuel from the combustion chamber prior to ignition
 [B. Beardsley, 1990]

This Project Explores the Feasibility of Sealing the Porous TBC Surface by Applying a Seal Coating

- Materials Criteria
 - Non-porous and impermeable
 - Good adhesion to CSZ
 - High thermal stability
 - No debit to CSZ strain tolerance
 - Resistance to erosion and wear
- Processing Criteria
 - Processing temperatures below
 500°C to avoid tempering of iron components
 - Conformal coating on complex, porous TBC surface

Surface morphology of APS-CSZ (as received)

Coating Material Selection

Candidate Seal Coating Materials Were Screened Without Cast Iron Substrate

• "Free-standing" APS-CSZ coupons (1x1cm) were coated with:

MATERIAL	CTE	MODULUS
	$(x10^{-6}/K)$	(GPa)
α -Al ₂ O ₃	8	380
$3Al_2O_3 \cdot 2SiO_2$	6	145
SiO_2 (fused)	0.5	70
CSZ (substrate)	~10	~200
Si (substrate)	3	163

- High-temperature chloride-based CVD processes were used: $2AlCl_3 + 3CO_2 + 3H_2 \rightarrow Al_2O_3 + 6HCl + 3CO (1050^{\circ}C)$ $SiCl_4 + 2CO_2 + 2H_2 \rightarrow SiO_2 + 4HCl + 2CO (1050^{\circ}C)$
- Thermally cycled to 1150°C in air to assess seal coating/CSZ stability
- $3Al_2O_3 \cdot 2SiO_2$ and SiO_2 spalled during thermal cycling, probably due to CTE mismatch with respect to CSZ

Al₂O₃ Seal Coating (from Chloride Process) Was Uniform, Conformal, and Thermally Stable

As coated:

After 49 1-h. Cycles to 1150°C.

Screening Results Suggest That Metastable Al₂O₃ Seal Coating May Be Useful If It Can Be Prepared at T < 500°C

Free-standing CSZ without seal coating

Free-standing CSZ coated and cycled

MOCVD Al₂O₃ Coating Synthesis

$Al(acac)_3$ and H_2O Were Selected to Prepare Low-temperature Al_2O_3 Seal Coating

- Major reasons:
 - Decomposes readily (well below 500°C)
 - Low toxicity and cost
 - Relatively moisture-insensitive
 - Stable compound at room temperature
 - Some carbon contamination observed
- Inclusion of water vapor appears to help eliminate carbon contamination [J.S. Kim *et al.*, 1993]

Cold-wall Al₂O₃ MOCVD System Constructed

Uniform and Conformal MOCVD Al₂O₃ Seal Coating Was Prepared at 500[•]C

 Al_2O_3 on Silicon

 Al_2O_3 on CSZ

Thermal Stability of MOCVD Al₂O₃ Coating

Thinner Al₂O₃ Coating on Silicon Did Not Spall upon Annealing

Crystallization of Al₂O₃ Occurred Relatively Rapidly (<20 Hours) at 700°C to 1200°C

Not much Al₂O₃ remained on the substrate for XRD analysis

Al₂O₃ on Constrained CSZ/Iron Substrate Cracked Upon Annealing

Comparison & Summary

Annealing of MOCVD Al₂O₃ Leads to Inadequate Adhesion and Sealing

- Considerable spallation on silicon with 2.25 μ m coating
 - CTE mismatch
 - Volume shrinkage due to crystallization ($> \sim 9\%$)
- Sub-micron coatings on silicon were less susceptible to spallation
- Adhered on CSZ, but coating cracked as crystallization occurred
 - Less CTE mismatch with CSZ than with Si
 - Better adhesion may be due to mechanical interlocking at CSZ/coating interface
 - Volume shrinkage still significant (>~9%)

Comparison of Chloride-based Al₂O₃ vs. MOCVD Al₂O₃

	Chloride-based Al ₂ O ₃	$\begin{array}{c} MOCVD\\ Al_2O_3 \end{array}$
As prepared:	Conformal, mostly metastable (θ)	Conformal, amorphous
Thermally annealed:	Retained adhesion & no cracking	Severe cracking, despite adhesion
Crystallization:	θ -Al ₂ O ₃ $\rightarrow \alpha$ -Al ₂ O ₃	Amorphous \rightarrow metastable, α -Al ₂ O ₃
	$(\Delta V \sim -9\%)$	$(\Delta V > -9\%)$
Possible C & H impurities:	Highly unlikely	Possible, but minimized
Quality of sealing:	"Sufficient"	"Insufficient"

Conclusions

- Chloride-based Al_2O_3 coating deposited at 1050°C was mostly θ - Al_2O_3
 - Sealed the porous surface, although it transformed from θ to α -Al₂O₃
- MOCVD Al₂O₃ coating could be prepared at 500°C, but was amorphous
 - Adhered to CSZ upon annealing, but cracked extensively
- Metastable Al_2O_3 coating (*e.g.*, θ - Al_2O_3) and appropriate processing modifications may be required