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Rationale for Seal Coating

• Thermal Barrier Coatings (TBCs) are being 
considered to improve diesel engine 
efficiency
– CeO2-stabilized ZrO2 (CSZ) prepared by air 

plasma spray (APS) provides thermal insulation 
of diesel components

– APS-CSZ is made porous for strain tolerance and 
enhanced thermal insulation

• Unexpectedly, testing at Caterpillar revealed 
a decrease in engine efficiency when 
components were coated with a TBC
– One possible reason may be the porosity of the 

TBC, which is suspected to “entrain” fuel from 
the combustion chamber prior to ignition          
[B. Beardsley, 1990]
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• Materials Criteria
– Non-porous and impermeable
– Good adhesion to CSZ
– High thermal stability
– No debit to CSZ strain tolerance
– Resistance to erosion and wear

• Processing Criteria
– Processing temperatures below 

500°C to avoid tempering of iron 
components

– Conformal coating on complex, 
porous TBC surface

Surface morphology 
of APS-CSZ
(as received)

This Project Explores the Feasibility of Sealing the 
Porous TBC Surface by Applying a Seal Coating

12.5 µm



Coating Material Selection



Candidate Seal Coating Materials Were Screened 
Without Cast Iron Substrate

• “Free-standing” APS-CSZ coupons (1x1cm) were coated with:

• High-temperature chloride-based CVD processes were used:
2AlCl3 + 3CO2 + 3H2 → Al2O3 + 6HCl + 3CO   (1050°C)

SiCl4 + 2CO2 + 2H2 → SiO2 + 4HCl + 2CO  (1050 °C)

• Thermally cycled to 1150°C in air to assess seal coating/CSZ 
stability

• 3Al2O3·2SiO2 and SiO2 spalled during thermal cycling, 
probably due to CTE mismatch with respect to CSZ

MATERIAL CTE
(x10-6/K)

MODULUS
(GPa)

α-Al2O3 8 380
3Al2O3⋅2SiO2 6 145
SiO2 (fused) 0.5 70
CSZ (substrate) ~10 ~200
Si (substrate) 3 163
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Screening Results Suggest That Metastable 
Al2O3 Seal Coating May Be Useful If It Can 

Be Prepared at T < 500°C

Free-standing CSZ without 
seal coating

Free-standing CSZ coated
and cycled



MOCVD Al2O3 Coating 
Synthesis



Al(acac)3 and H2O Were Selected to Prepare 
Low-temperature Al2O3 Seal Coating

• Major reasons:
– Decomposes readily (well below 500°C) 
– Low toxicity and cost
– Relatively moisture-insensitive
– Stable compound at room temperature
– Some carbon contamination observed

• Inclusion of water vapor appears to 
help eliminate carbon contamination 
[J.S. Kim et al., 1993]
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Cold-wall Al2O3 MOCVD System Constructed
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Uniform and Conformal MOCVD Al2O3 Seal 
Coating Was Prepared at 500°C

Al2O3 on Silicon Al2O3 on CSZ
10µm10 µm



Thermal Stability of 
MOCVD Al2O3 Coating



Thinner Al2O3 Coating on Silicon
Did Not Spall upon Annealing
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1200 ºC

Crystallization of Al2O3 Occurred Relatively 
Rapidly (<20 Hours) at 700°C to 1200°C
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Al2O3 on Constrained CSZ/Iron Substrate 
Cracked Upon Annealing
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Comparison & Summary



• Considerable spallation on silicon with 2.25 µm coating
– CTE mismatch
– Volume shrinkage due to crystallization ( > ~9%)

• Sub-micron coatings on silicon were less susceptible to 
spallation

• Adhered on CSZ, but coating cracked as crystallization 
occurred
– Less CTE mismatch with CSZ than with Si
– Better adhesion may be due to mechanical interlocking at 

CSZ/coating interface
– Volume shrinkage still significant ( > ~ 9%)

Annealing of MOCVD Al2O3 Leads to Inadequate 
Adhesion and Sealing



Chloride-based
Al2O3

MOCVD
Al2O3

As prepared: Conformal, mostly
metastable (θ)

Conformal, amorphous

Thermally annealed: Retained adhesion &
no cracking

Severe cracking,
despite adhesion

Crystallization: θ-Al2O3 → α-Al2O3

(∆V ~ -9%)

Amorphous →
metastable, α-Al2O3

(∆V > -9%)

Possible C & H
impurities:

Highly unlikely Possible, but
minimized

Quality of sealing: “Sufficient” “Insufficient”

Comparison of Chloride-based Al2O3
vs. MOCVD Al2O3



• Chloride-based Al2O3 coating deposited at 1050°C was 
mostly θ-Al2O3
– Sealed the porous surface, although it transformed from θ- to  

α-Al2O3

• MOCVD Al2O3 coating could be prepared at 500°C, but 
was amorphous
– Adhered to CSZ upon annealing, but cracked extensively

• Metastable Al2O3 coating (e.g., θ-Al2O3) and 
appropriate processing modifications may be required

Conclusions


