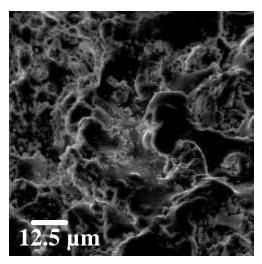

Morphology and High-temperature Stability of Amorphous Alumina Coatings Deposited on Si and CeO₂-Stabilized ZrO₂ by MOCVD

> J. D. Meyer and W. Y. Lee Dept. of Materials Science & Engineering Stevens Institute of Technology

> > MRS 1998 Fall Meeting Boston, MA December 2, 1998

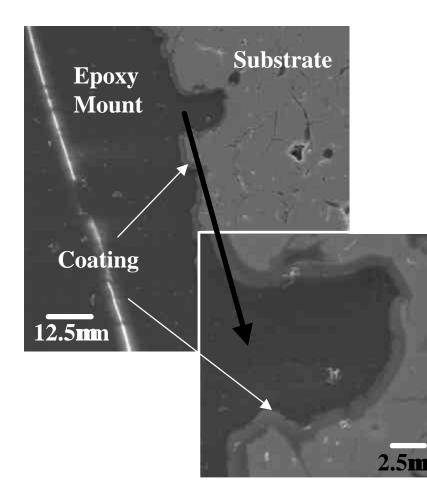

Rationale for Seal Coating

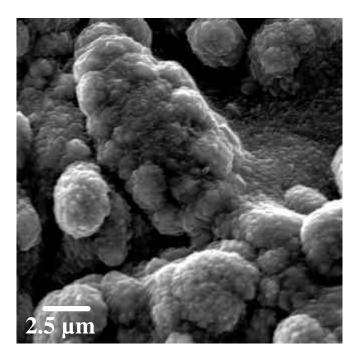
- Thermal Barrier Coatings (TBCs) are being considered to improve diesel engine efficiency
 - CeO₂-stabilized ZrO₂ (CSZ) prepared by air plasma spray (APS) provides thermal insulation of diesel components
 - APS-CSZ is made porous for strain tolerance and enhanced thermal insulation
- Unexpectedly, testing at Caterpillar revealed a decrease in engine efficiency when components were coated with a TBC
 - One possible reason may be the porosity of the TBC, which is suspected to "entrain" fuel from the combustion chamber prior to ignition [B. Beardsley, 1990]

This Project Explores the Feasibility of Sealing the Surface of the TBC by Applying a Seal Coat

- Materials Criteria
 - Non-porous and impermeable
 - Good adhesion to CSZ
 - High thermal stability
 - No debit to CSZ strain tolerance
 - Resistance to erosion and wear
- Processing Criteria
 - Processing temperatures below
 500°C to avoid tempering of iron components
 - Conformal coating on complex, porous TBC surface

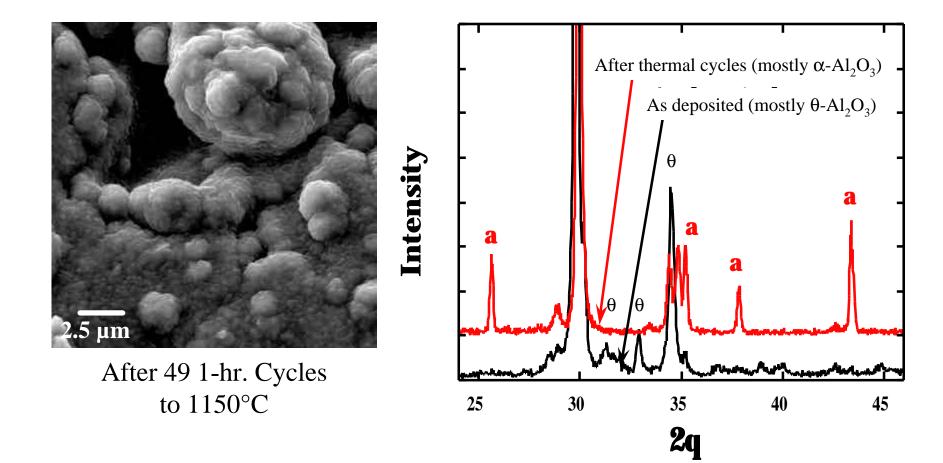
Surface morphology of APS-CSZ (as received)


Candidate Seal Coating Materials Were Screened Without Cast Iron Substrate


• "Free-standing" APS-CSZ coupons (1x1cm) were coated with:

MATERIAL	СТЕ	MODULUS
	$(x10^{-6}/K)$	(GPa)
α -Al ₂ O ₃	8	380
$3Al_2O_3 \cdot 2SiO_2$	6	145
SiO_2 (fused)	0.5	70
CSZ	~10	~200
Si	3	163

- High-temperature chloride-based CVD processes were used: $2AlCl_3 + 3CO_2 + 3H_2 \rightarrow Al_2O_3 + 6HCl + 3CO (1050^{\circ}C)$ $SiCl_4 + 2CO_2 + 2H_2 \rightarrow SiO_2 + 4HCl + 2CO (1050^{\circ}C)$
- Thermally cycled to 1150°C in air to assess seal coating/CSZ stability


Al₂O₃ Seal Coating (from Chloride Process) Was Uniform and Conformal

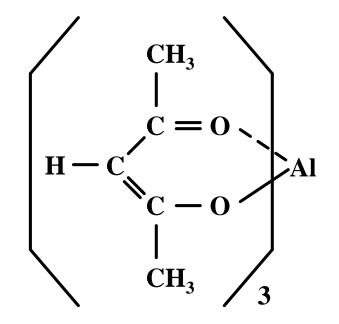
As coated

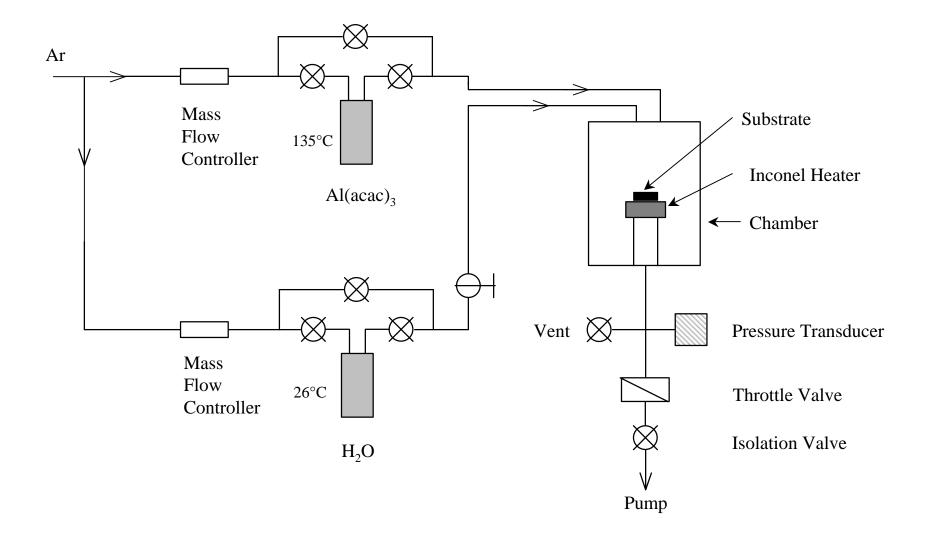
Al₂O₃ Seal Coating (from Chloride Process) Was Stable upon Thermal Cycling

Initial Screening Results Suggest That Metastable Al_2O_3 Seal Coating May Be Useful If It Can Be Prepared at $T < 500^{\circ}C$

- Al_2O_3 was able to seal the porous CSZ surface
 - Although it transformed from θ to α -Al₂O₃

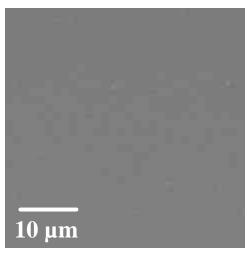
Free-standing CSZ without seal coating:


Free-standing CSZ coated and annealed:

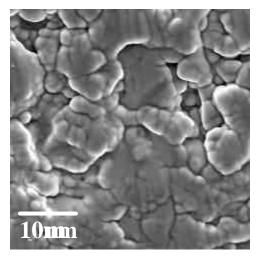

• $3Al_2O_3 \cdot 2SiO_2$ and SiO_2 spalled during thermal cycling, probably due to CTE mismatch with respect to CSZ

$Al(acac)_3$ and H_2O Were Selected to Prepare Low-temperature Al_2O_3 Seal Coating

- Major reasons:
 - Decomposes readily (well below 500°C)
 - Low toxicity and cost
 - Relatively moisture-insensitive
 - Stable compound at room temperature
 - Some carbon contamination observed
- Inclusion of water vapor appears to help eliminate carbon contamination [J.S. Kim, *et al.*, 1993]



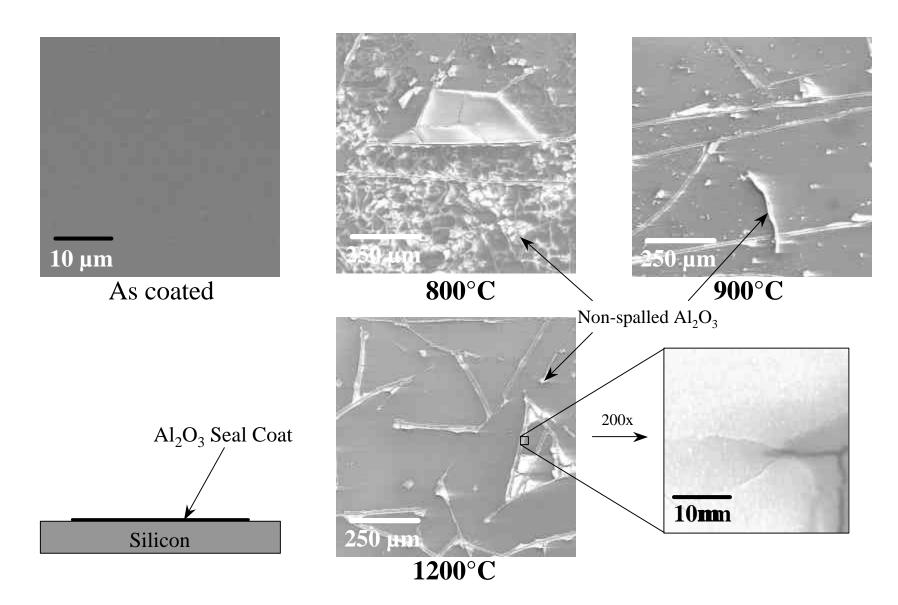
Cold-wall Al₂O₃ MOCVD System Constructed



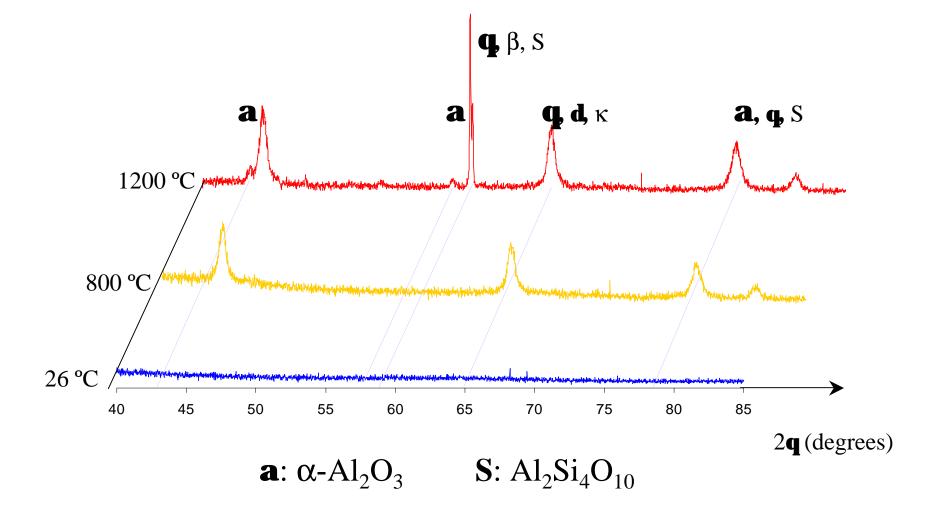
MOCVD Al₂O₃ Seal Coating Process Parameters Were Optimized

Substrate temperature	505 ±5°C
Total pressure	1.33 kPa
Argon supply rate $(Al(acac)_3 / H_2O)$	120 / 20 cm ³ /min
Effective flow rate (Al(acac) ₃ / H ₂ O)	$0.43 / 0.67 \text{ cm}^3/\text{min}$
Al(acac) ₃ vaporization temperature	130-135°C

 Al_2O_3 on Si

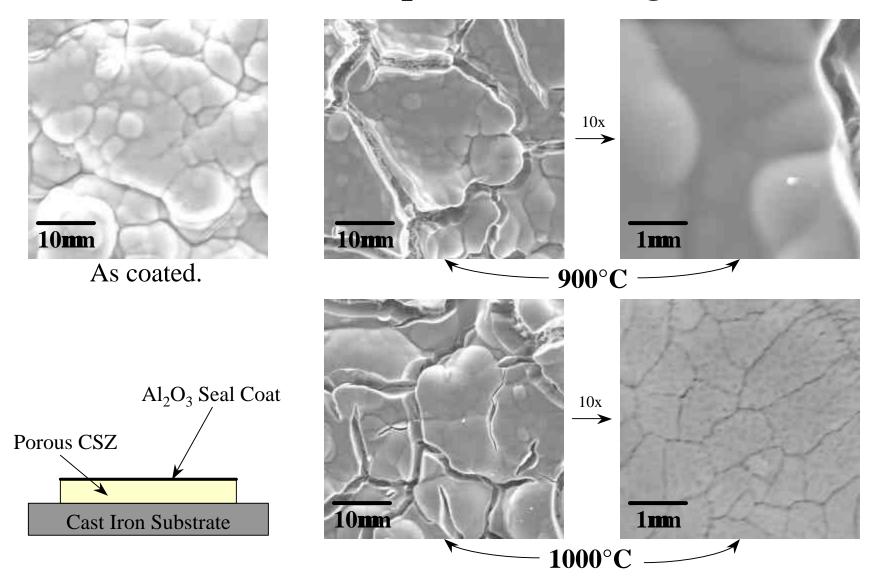


 Al_2O_3 on CSZ

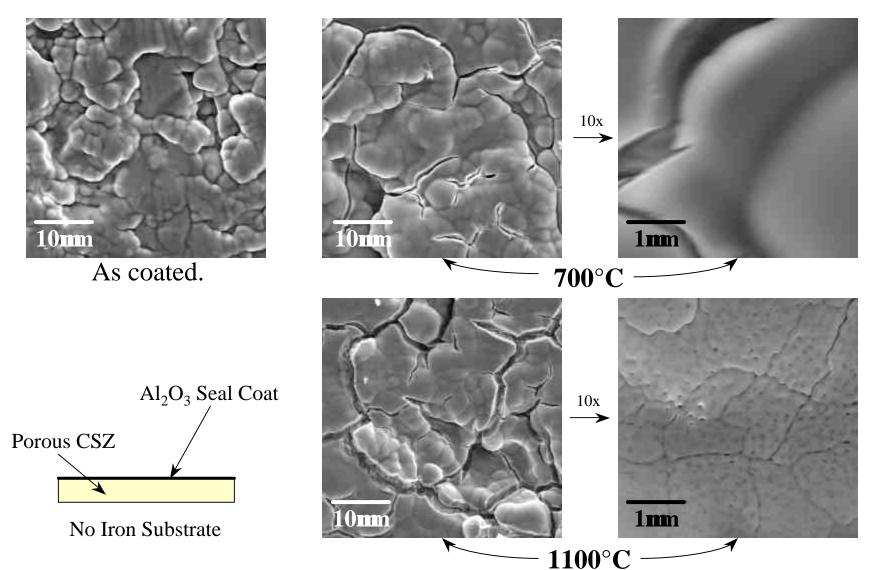

Experimental Approach to Testing MOCVD Al_2O_3 Seal Coating

- Potential problems with MOCVD Al₂O₃ coating:
 - Amorphous Al_2O_3 with possible C and H impurities
 - Significant volume shrinkage expected upon crystallization (~ -9%)
- Substrate issues:
 - CSZ-coated iron flexure bar
 - Free-standing CSZ: CSZ without iron substrate
 - Silicon: ease of characterization, but large thermal mismatch
- Thermal exposure from 700°C to 1200°C in air for 20 hrs.

MOCVD Al₂O₃ on Silicon Spalled upon Annealing



Crystallization of MOCVD Al₂O₃ Occurs Relatively Rapidly (20 Hours) at 700°C to 1200°C



Not much Al_2O_3 remained on the substrate for XRD analysis

MOCVD Al₂O₃ on Constrained CSZ/Iron Cracked Upon Annealing

Metallic Substrate Had No Discernable Effect on Coating Behavior

Annealing of MOCVD Al₂O₃ Leads to Inadequate Adhesion and Sealing

- Considerable spallation on silicon
 - CTE mismatch
 - Volume shrinkage due to crystallization
- Adhered on CSZ, but coating cracked as crystallization occurred
 - Less CTE mismatch with CSZ than with Si
 - Better adhesion may be due to mechanical interlocking at CSZ/coating interface
 - Volume shrinkage still significant (~ 9%)

Comparison of Chloride-based Al₂O₃ vs. MOCVD Al₂O₃

	Chloride-based Al ₂ O ₃	MOCVD Al ₂ O ₃
As prepared:	Conformal, mostly metastable (θ)	Conformal, amorphous
Thermally annealed:	Retained adhesion & structural integrity	Severe cracking, despite adhesion
Crystallization:	θ -Al ₂ O ₃ $\rightarrow \alpha$ -Al ₂ O ₃	Amorphous \rightarrow metastable, α -Al ₂ O ₃
	$(\Delta V < -9\%)$	$(\Delta V > -9\%)$
Possible C & H impurities:	Highly unlikely	Possible, but minimized
Quality of sealing:	"Sufficient"	Insufficient

Conclusions

- Chloride-based Al_2O_3 coating deposited at 1050°C contained significant amounts of θ -Al₂O₃.
- MOCVD Al₂O₃ coating could be prepared at 500°C, but was entirely amorphous.
- Metastable Al_2O_3 coating (θ - Al_2O_3 minimum?) may be required to survive annealing and crystallization.
- Literature describes no MOCVD system in which a crystalline Al_2O_3 coating can be deposited below 500°C.
- Alternative materials, along with a suitable coating process, still need to be explored.

Acknowledgments

- Current research sponsored by Brad Beardsley at *Caterpillar, Inc.*
- The results from the chloride-based Al₂O₃ coating work were obtained by W.Y. Lee at Oak Ridge National Laboratory under the sponsorship of Ray Johnson, *Heavy Vehicle Propulsion System Materials Program*, DOE Office of Transportation Technologies.