

Hf Doping of an Aluminide Bond Coat for Single Crystal Jet Engine Turbine Blades

J. D. Meyer

L.M. He, G. Y. Kim, and W. Y. Lee

<u>Sponsors</u> NSF-GOALI DMR9801042 DOE/ORNL-ATS **Robert C. Stanley Fellowship** AGTSR Internship **Collaborators**

Ram Darolia, GE Aircraft Engines Allen Haynes, ORNL

Department of Chemical, Biochemical, and Materials Engineering

Integrated Learning Environ. for Interface Design

Stevens Institute of Technology

Superior Adhesion Needed for Next Generation TBCs

J. D. Meyer

"Model" TGO Behavior (Initial Work)

Cast stoichiometric **b**-NiAl - Pint et al., 1998 **Beneficial effects of Hf** - **TGO** growth kinetics - Columnar TGO - Immobilized sulfur impurity - Creep resistance of **b**-NiAl **Optimum performance** -~0.2 wt% Hf Hf solubility in cast b-NiAl - Not precisely measured

Hf Doping: Rationale and Issues

CVD Reactor Designed for Short-time Experiments

J. D. Meyer

First Approach: Sequential Doping Procedure

Result: Change in Microstructure was not Desirable

No Hf : columnar structure

With Hf: discontinuous structure

Second Approach: Continuous Doping Procedure

Result: Absorption of HfCl₄ is a Rate Limiting Step

Hf Conc. And Dist. Measured by GDMS & EMPA

March 8, 2001

Stevens Institute of Technology

Evaluation of Processing Approaches

- First approach (sequential doping) resulted in an undesirable microstructure—deposition time may have been too long
- Second approach (continuous doping) resulted in coatings with a desirable microstructure, but Hf concentrations too low to measure with state of the art techniques!
- A combination of the two would seem to be the only option remaining: the only way to deposit a suitable amount of Hf is by the first approach, but it must be done in many small layers, such that the desired microstructure is maintained

Dose "Level" Determination Exp. (0.5% HCl)

• Determine maximum dose level while maintaining precipitates

Dose Distribution Experiment

• Create four coatings over the desired range of Hf concentrations for eventual TBC coating and FCTing

Pulsed deposition of Hf with 0.5% HCl

Aluminizing with 100% HCl

- Pulse frequency calculations are based on
 - 15 minutes of aluminizing \rightarrow 3µm NiAl
 - Optimal thickness determined in previous "dose level" experiment

Refinement of Procedure Based on GEAE Data

- Internship at GEAE this summer will make use of their large experience and data base
- Statistical analysis of GEAE coating characterization data to estimate the ideal frequency/distribution of Hf *(summer plan)*
- Based on trends observed in the GEAE coating samples, we can tailor our deposition process to produce a more viable coating for testing

How to Synthesize Coatings with 0.01 to 3 wt% Hf?

