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Initial Seal Coating Work Reveals Volume 
Shrinkage Due to Crystallization: A Serious Obstacle

• Thermal Barrier Coatings (TBCs) are being 
considered to improve diesel engine 
efficiency
– CeO2-stabilized ZrO2 (CSZ) prepared by air 

plasma spray (APS) is made porous for strain 
tolerance and enhanced thermal insulation

• Unexpectedly, testing at Caterpillar revealed  
a decrease in engine efficiency when 
components were coated with a TBC
– One possible reason may be the porosity of the 

TBC, which is suspected to “entrain” fuel from the 
combustion chamber prior to ignition     
[B. Beardsley, 1990]

• Thick MOCVD Al2O3 coatings deposited on 
APS-CSZ adhered, but cracked significantly
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• Materials Criteria
– Non-porous and impermeable
– Good adhesion to CSZ
– High thermal stability
– No debit to CSZ strain tolerance
– Resistance to erosion and wear

• Processing Criteria
– Processing temperatures below 

500°C to avoid tempering of iron 
components

– Conformal coating on complex, 
porous TBC surface

Surface morphology 
of APS-CSZ
(as received)

This Project Explores the Feasibility of Sealing 
the Surface of the TBC by Applying a Seal Coat

12.5 µm



Candidate Seal Coating Materials Were Screened 
Without Cast Iron Substrate

• “Free-standing” APS-CSZ coupons (1x1cm) were coated 
with:

• High-temperature chloride-based CVD processes were used:
2AlCl3 + 3CO2 + 3H2 → Al2O3 + 6HCl + 3CO   (1050°C)

SiCl4 + 2CO2 + 2H2 → SiO2 + 4HCl + 2CO  (1050 °C)

• Thermally cycled to 1150°C in air to assess seal 
coating/CSZ stability

MATERIAL CTE
(x10-6/K)

MODULUS
(GPa)

α-Al2O3 8 380
3Al2O3⋅2SiO2 6 145
SiO2 (fused) 0.5 70
CSZ ~10 ~200
Si 3 163



• Halides (AlCl3)
– Operational range mostly > 700°C
– Stable, good for α (generally not formed     below 950°C
– Process can be problematic: high leak/oxygen sensitivity, homogeneous 

nucleation

• Metalorganics 
– Operational range b/w 250 and 1000°C
– Volatile, but subject to C contamination
– Aluminum Alkoxides - Al(OR)3: High porosity, impurities, hydrophobic
– Aluminum Acetylacetonate
– Aluminum Alkyl Compounds - AlR3

• unknown, homogeneous nucleation, poor adhesion, sensitive to humidity

– Others: Esoteric or not well known

Major Precursor Types



Al(acac)3 and H2O Were Selected to Prepare 
Low-temperature Al2O3 Seal Coating

• Major reasons:
– Decomposes readily (well below 500°C) 
– Low toxicity and cost
– Relatively moisture-insensitive
– Stable compound at room temperature
– Some carbon contamination observed

• Inclusion of water vapor appears to 
help eliminate carbon contamination 
[J.S. Kim, et al., 1993]
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Cold-wall Al2O3 MOCVD System Constructed
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MOCVD Al2O3 Seal Coating Process 
Parameters Were Optimized

Al2O3 on Si Al2O3 on CSZ

Substrate temperature 505 ±5°C
Total pressure 1.33 kPa
Argon supply rate (Al(acac)3 / H2O) 120 / 20 cm3/min
Effective flow rate (Al(acac)3 / H2O) 0.43 / 0.67 cm3/min
Al(acac)3 vaporization temperature 130-135°C

10µm10 µm



• Potential problems with MOCVD Al2O3 coating:
– Amorphous Al2O3 with possible C and H impurities 
– Significant volume shrinkage expected upon crystallization  (~ -9%)

• Substrate issues:
– CSZ-coated iron flexure bar
– Free-standing CSZ:  CSZ without iron substrate
– Silicon: ease of characterization, but large thermal mismatch

• Thermal exposure from 700°C to 1200°C in air for 20 hrs.

Experimental Approach to Testing MOCVD 
Al2O3 Seal Coating



Dependence of Phase Appearance

• Primary:
– Starting Material (precursor)
– Temperature

• Secondary:
– Annealing parameters
– Impurities
– Crystallinity
– Atmosphere



Initial Coating Nucleation & Growth

• Highly correlated to the supersaturation of precursors
• Reduction in temperature results in an increase in nucleus 

density
• Substrate variations will adversely affect nuclei density-

affecting adhesion
– non-uniform phase distribution (cemented carbides (I.e., tool tips) 

results in varied nucleus density and hence, grain size

• No consensus reached in literature



Sustaining Coating Growth

• Increased temperature, to a major extent, only changes 
phase deposition/transformation kinetics

• System pressure
– Generally, lower pressure is favored for species creation during

precursor decomposition
– Under ~6.7kPa (50 Torr), reports have been made of roughly linear 

increase of growth rate with Ptotal

• Precursor partial pressures control deposition by depriving 
the reaction system of a sufficient amount of a vital 
constituent- “choking” the deposition process and effecting 
control on the morphology



Thick (2.25µm) Al2O3 on Si Spalled upon Annealing
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Crystallization of MOCVD Al2O3 Occurs
Relatively Rapidly (20 Hours) at 700°C to 1200°C

Not much Al2O3 remained on the substrate for XRD analysis

α: α-Al2O3 S: Al2Si4O10



MOCVD Al2O3 on Un/Constrained CSZ/Iron 
Cracked Upon Annealing
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“Thick” Al2O3 Coating Cracked During Annealing

• Annealing of thick (2.25 µm) MOCVD 
Al2O3 coatings leads to inadequate 
adhesion and sealing
– CTE mismatch
– Volume shrinkage due to crystallization 

(~9%) (θ- → α- Al2O3)

• Work by F.F. Lange stipulates that thin 
coatings (~100nm) are better able to 
contain tensile stress systems
– crack propagation occurs only when free 

energy of any film would be reduced; strain 
energy depends on film thickness

– There is a critical film thickness associated 
with a maximum internal energy 1µm

10µm



Sub-micron Coatings Exhibited Slight Cracking
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Annealing of Very Thin Coatings on Silicon 
Resulted in Roughening of Surface
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Annealing of Al2O3 Coatings at 1100°C for 20 Hours 
Showed Several Thickness-based Trends

• Thinner coatings on silicon appear to maintain a lower 
distribution of crack-initiating “pores”

• Despite this, transformation is not evident in XRD patterns, 
requiring additional effort to confirm Al2O3 crystallization

• Sub-100nm coatings may provide a solution to the micro-
cracking problem, but are they sufficiently conformal?

• Coatings on silicon carbide appear to “coagulate” more 
easily as thickness drops, especially in center of samples

• Coatings on nickel alloy substrates demonstrate increased 
leveling as thickness decreases (by ∆ of focus depth)



Silicon Carbide & Nickel Alloy Substrates at 1100°C
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• Chloride-based Al2O3 coating deposited at 1050°C contained 
significant amounts of θ-Al2O3

• MOCVD Al2O3 coating could be prepared at 500°C, but was 
entirely amorphous

• Metastable Al2O3 coating (θ-Al2O3 minimum?) may be 
required to survive annealing and crystallization

• Literature describes no MOCVD system in which a 
crystalline Al2O3 coating can be deposited below 500°C

• Alternative materials, along with a suitable coating process, 
still need to be explored

MOCVD Coating Process Based on Prior Work



Conclusion: Crystallization/Thickness Dependencies

• Cracking of “thick” coatings due to +9% volume shrinkage 
associated with crystallization during annealing rendered 
initial seal coating essentially useless - leading to the 
investigation of sub-micron coatings

• Sub-quarter micron coatings showed decreased crack 
formation with reduced thickness, while sub-100 angstrom 
coatings maintaining integrity during crystallization despite 
morphological peculiarities

• Increasing deposition temperature to 1050C resulted in 
deposition of crystalline coatings, minor cracking evident

• Increasing system pressure reduced growth rate along with 
amount of powder deposited on sample, but many meta-stable 
Al2O3 phases visible just above noise
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Al2O3 Seal Coating (from Chloride Process) 
Was Uniform and Conformal
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Al2O3 Seal Coating (from Chloride Process) 
Was Stable upon Thermal Cycling
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Micro-Cracking Falls With Coating Thickness
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Chloride-based
Al2O3

MOCVD
Al2O3

As prepared: Conformal, mostly
metastable (θ)

Conformal, amorphous

Thermally annealed: Retained adhesion &
structural integrity

Severe cracking,
despite adhesion

Crystallization: θ-Al2O3 → α-Al2O3

(∆V < -9%)

Amorphous →
metastable, α-Al2O3

(∆V > -9%)

Possible C & H
impurities:

Highly unlikely Possible, but
minimized

Quality of sealing: “Sufficient” Insufficient

Comparison of Chloride-based Al2O3
vs. MOCVD Al2O3



Primary Phase Nucleation Mechanisms
• Surface of substrate, leading to a “rising front” as phase 

boundary migrates upwards
• Grain boundary nodes
• Coating crack edges


