Thermal Stability of Al₂O₃ Coatings Deposited on Si and High Performance Materials

J. D. Meyer

Department of Chemical, Biochemical, and Materials Engineering Stevens Institute of Technology

February 9, 2000

Initial Seal Coating Work Reveals Volume Shrinkage Due to Crystallization: A Serious Obstacle

- Thermal Barrier Coatings (TBCs) are being considered to improve diesel engine efficiency
 - CeO₂-stabilized ZrO₂ (CSZ) prepared by air plasma spray (APS) is made porous for strain tolerance and enhanced thermal insulation
- Unexpectedly, testing at Caterpillar revealed a decrease in engine efficiency when components were coated with a TBC
 - One possible reason may be the porosity of the TBC, which is suspected to "entrain" fuel from the combustion chamber prior to ignition
 [B. Beardsley, 1990]
- Thick MOCVD Al₂O₃ coatings deposited on APS-CSZ adhered, but cracked significantly

This Project Explores the Feasibility of Sealing the Surface of the TBC by Applying a Seal Coat

- Materials Criteria
 - Non-porous and impermeable
 - Good adhesion to CSZ
 - High thermal stability
 - No debit to CSZ strain tolerance
 - Resistance to erosion and wear
- Processing Criteria
 - Processing temperatures below
 500°C to avoid tempering of iron components
 - Conformal coating on complex, porous TBC surface

Surface morphology of APS-CSZ (as received)

Candidate Seal Coating Materials Were Screened Without Cast Iron Substrate

• "Free-standing" APS-CSZ coupons (1x1cm) were coated with:

MATERIAL	CTE	MODULUS
	$(x10^{-6}/K)$	(GPa)
α -Al ₂ O ₃	8	380
$3Al_2O_3 \cdot 2SiO_2$	6	145
SiO_2 (fused)	0.5	70
CSZ	~10	~200
Si	3	163

- High-temperature chloride-based CVD processes were used: $2AlCl_3 + 3CO_2 + 3H_2 \rightarrow Al_2O_3 + 6HCl + 3CO (1050^{\circ}C)$ $SiCl_4 + 2CO_2 + 2H_2 \rightarrow SiO_2 + 4HCl + 2CO (1050^{\circ}C)$
- Thermally cycled to 1150°C in air to assess seal coating/CSZ stability

Major Precursor Types

- Halides (AlCl₃)
 - Operational range mostly $> 700^{\circ}$ C
 - Stable, good for α (generally not formed below 950°C
 - Process can be problematic: high leak/oxygen sensitivity, homogeneous nucleation
- Metalorganics
 - Operational range b/w 250 and 1000°C
 - Volatile, but subject to C contamination
 - Aluminum Alkoxides $Al(OR)_3$: High porosity, impurities, hydrophobic
 - Aluminum Acetylacetonate
 - Aluminum Alkyl Compounds AlR₃
 - unknown, homogeneous nucleation, poor adhesion, sensitive to humidity
 - Others: Esoteric or not well known

$Al(acac)_3$ and H_2O Were Selected to Prepare Low-temperature Al_2O_3 Seal Coating

- Major reasons:
 - Decomposes readily (well below 500°C)
 - Low toxicity and cost
 - Relatively moisture-insensitive
 - Stable compound at room temperature
 - Some carbon contamination observed
- Inclusion of water vapor appears to help eliminate carbon contamination [J.S. Kim, *et al.*, 1993]

Cold-wall Al₂O₃ MOCVD System Constructed

MOCVD Al₂O₃ Seal Coating Process Parameters Were Optimized

Substrate temperature	505 ±5°C
Total pressure	1.33 kPa
Argon supply rate (Al(acac) ₃ / H ₂ O)	120 / 20 cm ³ /min
Effective flow rate (Al(acac) ₃ / H ₂ O)	$0.43 / 0.67 \text{ cm}^3/\text{min}$
Al(acac) ₃ vaporization temperature	130-135°C

 Al_2O_3 on Si

Al₂O₃ on CSZ

Experimental Approach to Testing MOCVD Al_2O_3 Seal Coating

- Potential problems with MOCVD Al₂O₃ coating:
 - Amorphous Al_2O_3 with possible C and H impurities
 - Significant volume shrinkage expected upon crystallization (~ -9%)
- Substrate issues:
 - CSZ-coated iron flexure bar
 - Free-standing CSZ: CSZ without iron substrate
 - Silicon: ease of characterization, but large thermal mismatch
- Thermal exposure from 700°C to 1200°C in air for 20 hrs.

Dependence of Phase Appearance

Figure 1. Transformation series of different aluminium hydroxides and aluminium oxide hydroxides in air (Temperature in °C). Open area indicates range of transition. Path b is favoured by moisture, alkalinity and coarse particle size (100 μ m), path a by fine crystal size (below 10 μ m). Reprinted from Reference [1] (p. 17) with the permission of The American Ceramic Society.

- Primary:
 - Starting Material (precursor)
 - Temperature

- Secondary:
 - Annealing parameters
 - Impurities
 - Crystallinity
 - Atmosphere

Initial Coating Nucleation & Growth

- Highly correlated to the supersaturation of precursors
- Reduction in temperature results in an increase in nucleus density
- Substrate variations will adversely affect nuclei densityaffecting adhesion
 - non-uniform phase distribution (cemented carbides (*I.e.*, tool tips) results in varied nucleus density and hence, grain size
- No consensus reached in literature

Sustaining Coating Growth

- Increased temperature, to a major extent, only changes phase deposition/transformation kinetics
- System pressure
 - Generally, lower pressure is favored for species creation during precursor decomposition
 - Under ~6.7kPa (50 Torr), reports have been made of roughly linear increase of growth rate with P_{total}
- Precursor partial pressures control deposition by depriving the reaction system of a sufficient amount of a vital constituent- "choking" the deposition process and effecting control on the morphology

Thick (2.25 μ m) Al₂O₃ on Si Spalled upon Annealing

Crystallization of MOCVD Al₂O₃ Occurs Relatively Rapidly (20 Hours) at 700°C to 1200°C

Not much Al_2O_3 remained on the substrate for XRD analysis

MOCVD Al₂O₃ on Un/Constrained CSZ/Iron Cracked Upon Annealing

"Thick" Al₂O₃ Coating Cracked During Annealing

- Annealing of thick (2.25 μm) MOCVD Al₂O₃ coatings leads to inadequate adhesion and sealing
 - CTE mismatch
 - Volume shrinkage due to crystallization (~9%) (θ - $\rightarrow \alpha$ - Al₂O₃)
- Work by F.F. Lange stipulates that thin coatings (~100nm) are better able to contain tensile stress systems
 - crack propagation occurs only when free energy of any film would be reduced; strain energy depends on film thickness
 - There is a critical film thickness associated with a maximum internal energy

Sub-micron Coatings Exhibited Slight Cracking

Annealing of Very Thin Coatings on Silicon Resulted in Roughening of Surface

110 nm

70 nm

10mm

40 nm

Annealing of Al₂O₃ Coatings at 1100°C for 20 Hours Showed Several Thickness-based Trends

- Thinner coatings on silicon appear to maintain a lower distribution of crack-initiating "pores"
- Despite this, transformation is not evident in XRD patterns, requiring additional effort to confirm Al_2O_3 crystallization
- Sub-100nm coatings may provide a solution to the microcracking problem, but are they sufficiently conformal?
- Coatings on silicon carbide appear to "coagulate" more easily as thickness drops, especially in center of samples
- Coatings on nickel alloy substrates demonstrate increased leveling as thickness decreases (by Δ of focus depth)

Silicon Carbide & Nickel Alloy Substrates at 1100°C

770 nm (26°C)

830 nm

510 nm

540 nm

SiC

MOCVD Coating Process Based on Prior Work

- Chloride-based Al_2O_3 coating deposited at 1050°C contained significant amounts of θ - Al_2O_3
- MOCVD Al₂O₃ coating could be prepared at 500°C, but was entirely amorphous
- Metastable Al_2O_3 coating (θ - Al_2O_3 minimum?) may be required to survive annealing and crystallization
- Literature describes no MOCVD system in which a crystalline Al_2O_3 coating can be deposited below 500°C
- Alternative materials, along with a suitable coating process, still need to be explored

Conclusion: Crystallization/Thickness Dependencies

- Cracking of "thick" coatings due to +9% volume shrinkage associated with crystallization during annealing rendered initial seal coating essentially useless leading to the investigation of sub-micron coatings
- Sub-quarter micron coatings showed decreased crack formation with reduced thickness, while sub-100 angstrom coatings maintaining integrity during crystallization despite morphological peculiarities
- Increasing deposition temperature to 1050C resulted in deposition of crystalline coatings, minor cracking evident
- Increasing system pressure reduced growth rate along with amount of powder deposited on sample, but many meta-stable Al_2O_3 phases visible just above noise

Acknowledgments

- Portions of this research sponsored by Brad Beardsley at *Caterpillar, Inc.*
- The results from the chloride-based Al₂O₃ coating work were obtained by W.Y. Lee at Oak Ridge National Laboratory under the sponsorship of Ray Johnson, *Heavy Vehicle Propulsion System Materials Program*, DOE Office of Transportation Technologies.

Back-up Slides

Al₂O₃ Seal Coating (from Chloride Process) Was Uniform and Conformal

As coated

Al₂O₃ Seal Coating (from Chloride Process) Was Stable upon Thermal Cycling

After 49 1-hr. Cycles to 1150°C

Micro-Cracking Falls With Coating Thickness

Comparison of Chloride-based Al₂O₃ vs. MOCVD Al₂O₃

	Chloride-based Al ₂ O ₃	MOCVD Al ₂ O ₃
As prepared:	Conformal, mostly metastable (θ)	Conformal, amorphous
Thermally annealed:	Retained adhesion & structural integrity	Severe cracking, despite adhesion
Crystallization:	θ -Al ₂ O ₃ $\rightarrow \alpha$ -Al ₂ O ₃	Amorphous \rightarrow metastable, α -Al ₂ O ₃
	$(\Delta V < -9\%)$	$(\Delta V > -9\%)$
Possible C & H impurities:	Highly unlikely	Possible, but minimized
Quality of sealing:	"Sufficient"	Insufficient

Primary Phase Nucleation Mechanisms

- Surface of substrate, leading to a "rising front" as phase boundary migrates upwards
- Grain boundary nodes
- Coating crack edges

