Morphology and High-temperature Stability of Thin Alumina Coatings Deposited on Si, SiC, and Ni

J. D. Meyer

Dept. of Materials Science & Engineering Stevens Institute of Technology

January 14, 1999

Initial Seal Coating Work Reveals Volume Shrinkage Due to Crystallization: A Serious Obstacle

- Thermal Barrier Coatings (TBCs) are being considered to improve diesel engine efficiency
 - CeO₂-stabilized ZrO₂ (CSZ) prepared by air plasma spray (APS) is made porous for strain tolerance and enhanced thermal insulation
- Unexpectedly, testing at Caterpillar revealed a decrease in engine efficiency when components were coated with a TBC
 - One possible reason may be the porosity of the TBC, which is suspected to "entrain" fuel from the combustion chamber prior to ignition
 [B. Beardsley, 1990]
- Thick MOCVD Al₂O₃ coatings deposited on APS-CSZ adhered, but cracked significantly

Thick (2.25 μ m) Al₂O₃ on Si Spalled upon Annealing

Crystallization of Al_2O_3 Occurs Relatively Rapidly (< 20 Hours) at 700°C to 1200°C

Not much Al₂O₃ remained on the substrate for XRD analysis

Spalling of Al₂O₃ Seal Coatings May Be Avoided by Reducing Coating Thickness

- Annealing of thick (2.25 μ m) MOCVD Al₂O₃ coatings leads to inadequate adhesion and sealing
 - Considerable spallation on silicon due to:
 - CTE mismatch
 - Volume shrinkage due to crystallization
 - Adhered on CSZ, but coating cracked as crystallization occurred
 - Less CTE mismatch with CSZ than with Si
 - Better adhesion may be due to mechanical interlocking at CSZ/coating interface
 - Volume shrinkage still significant (~ 9%)
- Work by F.F. Lange stipulates that thin coatings (~100nm) are better able to contain tensile stress systems
 - crack propagation occurs only when free energy of any film would be reduced; strain energy depends on film thickness
 - There is a critical film thickness associated with a maximum internal energy

Sub-micron Coatings Exhibited Slight Cracking

Micro-Cracking Falls With Coating Thickness

Silicon Carbide & Nickel Alloy Substrates at 1100°C

770 nm (26°C)

830 nm

510 nm

540 nm

Ni alloy

XRD Demonstrates Only Minimal Transformation

2 theta

2 Theta

Alumina on Si, Annealed at 700C (36-AO-01)

Annealing of Al₂O₃ Coatings at 1100°C for 20 Hours Showed Several Thickness-based Trends

- Thinner coatings on silicon appear to maintain a lower distribution of crack-initiating "pores"
- Despite this, transformation is not evident in XRD patterns, requiring additional effort to confirm Al_2O_3 crystallization
- Coatings on silicon carbide appear to "coagulate" more easily as thickness drops, especially in center of samples
- Coatings on nickel alloy substrates demonstrate increased leveling as thickness decreases
- With confirmation of crystallinity, sub-100nm coatings can be analyzed for micro-cracks

Substrate Heating Issues Considered

- Atmospheric plasma processing
 - High energy, very low substrate temperature
 - High reaction area/volume inherent to process
- Flat, resistive element heater
 - Increased substrate temperature, expensive
 - Low maximum temperature
- Optical heating methods
 - esoteric and complex

Non-equilibrium, Atmospheric Plasma Processing (Luis Amorer & Prof. Kunhardt)

- Advantages
 - Processing at atmospheric pressure
 - Minimal substrate heating (can put hand in plasma)
 - High $T_e \sim 0.2 0.3 \text{ keV} >> T_i \sim T_n$
 - Large processing area/volume
- Obstacles
 - Plasma only just beginning to be characterized (no conclusive results of any nature, yet)
 - Anodes are fabricated using by depositing a highly-complex pattern of a high-dielectric material on the base anode material

Dielectric-patterned anode

Flat High-temperature Resistive Heater May Be to Expensive (Bell Labs / US, Inc. Thin Film Products)

- Advantages
 - Excellent temperature stability (±2°C) and uniformity (±8°C)
 - Short ramp time of 20 minutes (for 3" diameter heater)
 - Oxidation resistant
 - Geometrically compatible with current reactor
- Disadvantages
 - Maximum rated temperature of 950°C
 - High cost: \$3,500 \$3,800 for
 - 3" diameter heater

Optical Heating Methods Tend to Be Esoteric and Complex

- No information found on companies who manufacture focused UV or IR radiation heaters was found
- In one RTCVD (rapid thermal) setup, tungsten coil lamps are used in conjunction with mirrors lining the chamber to focus stray light on the substrate
- fast heating applications
 - requires fairly high angle of incidence to avoid requiring mirrors to maintain reasonable efficiency